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FIRST-ORDER EFFECTS O F  PLANE SURFACES ON 

THE KINETIC BEHAVIOR O F  GASES 

By Willard E. Meador 
Langley Research Center 

SUMMARY 

A linearized Boltzmann equation is solved exactly for  the problem of constant veloc- 
ity and temperature gradients in a semi-infinite gas of Maxwellian particles. Contrary 
to  s imilar  previous work, the solution satisfies all physical requirements at the boundary 
without the introduction of complex exponential t e rms  which a r e  nonanalytic in the mean 
f ree  path. The resul ts  apply also to simple Couette flow and a r e  accurate over a range 
of Knudsen numbers extending well into the transition flow regime. 
sions to large flow velocities a r e  investigated in the midst of the gas and a r e  compared 
with the work of Truesdell. 

Less  rigorous exten- 

INTRODUCTION 

The accommodation of gases  to solid surfaces is a problem of long standing in 
kinetic theory. (See ref. 1 for  a review of the earliest  works.) Theoretical expressions 
for  the associated velocity and temperature jumps in the immediate vicinity of a wall 
were first derived by Maxwell, but not without several  assumptions which seemed to lack 
any rigorous support. In particular,  the velocity distribution function was assumed to 
have the same characterist ics close t o  the wall as in the midst of the gas,  the velocity and 
temperature profiles were not permitted any unusual behavior, and the reflected particles 
were divided into two groups corresponding to specular and diffuse reflection. Only the 
last assumption is regarded as obsolete (see refs. 2 and 3) in  the present paper. 

One of the questions concerning Maxwell's theory is whether the velocity and tem- 
pera ture  jumps are real phenomena o r  simply mathematical consequences of the basic 
assumptions; for example, more rigorous treatments may yield continuous approaches of 
the flow velocity and gas temperature to the wall values and still satisfy the boundary con- 
ditions. Among the attempts to  derive the behavior of gases  near  walls directly f rom 
kinetic theory is a series of three papers (refs. 4 to 6) by Wang Chang and Uhlenbeck 
which indeed show substantial t rends toward the continuous approach to  wall properties, 
but which also predict nonanalytic velocity distribution functions with respect t o  the mean 
free path. Such resul ts  a r e  disturbing because they contradict both the Chapman-Enskog 



perturbation procedure (ref. 7) and the Grad moment expansion (ref. 8) in all but the near- 
continuum flow regime described by Navier-Stokes theory. Breakdowns of the standard 
techniques may not occur so rapidly with increasing values of the Knudsen number. 

A pr imary  purpose of the present research is to  show that Wang Chang and 
Uhlenbeck's nonanalytic distribution functions are direct  consequences of the use of 
Maxwell's hypothesis about the character of the reflected particles. The combination of 
Boltzmann's kinetic equation with oversimplified boundary conditions inevitably leads t o  
the incorrect appearance of nonanalytic hyperbolic te rms .  More physical boundary con- 
ditions with regard to the conservation of individual macroscopic moments, as opposed 
to  Maxwell's separation of reflected particles into specular and diffuse groups, are shown 
in the present paper to be entirely consistent with the assumption that the velocity dis- 
tribution function has the same characterist ics close to  the wall as in the midst of the gas. 
Velocity and temperature jumps occur precisely as Maxwell predicted. 

These conclusions are derived from calculations based on the exact solution of a 
linearized Boltzmann equation f o r  the problem of constant velocity and temperature gra-  
dients in a semi-infinite gas of Maxwellian particles. The linearization technique is 
equivalent to  that of references 4 to 6; thus the only difference between the general  
methods is in the expression and use of constraints at the wall. Use also is made of the 
fundamental premise that exact solutions which satisfy all boundary conditions accurately 
describe the gas behavior. 

The present resul ts  apply also to  simple Couette flow and a r e  accurate for  low 
Mach numbers over a range of Knudsen numbers extending well into the transition flow 
regime. This last  feature provides a reliable extrapolation of the Navier-Stokes theory 
for  the drag experienced by a flat plate; in addition, s imilar  extrapolations a r e  discussed 
for  the heat t ransfer  between flat  plates at different temperatures.  Finally, less rigorous 
extensions to  greater  flow velocities in the midst of a viscous gas are investigated and 
compared with Truesdell 's  work (ref. 9), which has been used in somewhat the same man- 
ner  as that of Wang Chang and Uhlenbeck in criticizing the standard Chapman-Enskog and 
Grad approximations. (See ref. 10.) 

SYMBOLS 

distribution function constants a1 '"2 

A Wang Chang-Uhlenbeck accommodation coefficient 

B constant in Wang Chang-Uhlenbeck boundary condition 
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particle velocity 

parallel plate separation 

drag force per  unit a r e a  

velocity distribution function 

Maxwellian distribution function relative to  mean gas velocity 

Maxwellian distribution function with respect t o  gas temperature at surface 
of plate and zero flow 

arbi t rary velocity function 

perturbation function relative to  plate conditions 

excess random energy striking plate per  unit a r e a  per  second 

random energy striking plate per unit a r ea  per  second 

random energy reemitted by plate per  unit a r e a  per  second 

unit vectors in x- ,  y- ,  and z-directions 

Boltzmann's constant 

K , K 0 7 K 1  9 K 3  velocity parameters  

I mean free path 

m particle mass  

n particle number density 

particle number density at surface of plate "0 

P scalar  pressure  
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pxzz 

22 
P 

t 

T 

TO 

TW 

T1 J2 

- 
U 

# 

U 

a! 

P 

PS 

Pw 

third moment defined by equation (59) 

traceless p res su re  tensor 

conductive heat flux 

t ime 

temperature of gas 

gas temperature at surface of plate 

plate (or wall) temperature if single plate 

temperatures of lower and upper plates 

dimensionless particle velocity relative to mean gas flow 

unit tensor 

mean gas velocity 

mean equilibrium particle speed 

slip velocity 

velocity of upper plate in Couette flow 

Cartesian coordinates; designate vector and tensor  components when used 
as subscripts 

accommodation coefficient for  energy 

magnitude of dimensionless flow velocity 

dimensionless sl ip velocity 

dimensionless velocity (Mach number) of upper plate in Couette flow 
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r’ dimensionless particle velocity relative to  stationary plate 

E temperature parameter  defined by equation (30) 

momentum parameter  introduced in equation (24) 
EN 

rl viscosity 

e a rb i t ra ry  velocity function 

x thermal  conductivity 

t temperature parameter  

P mass  density 

0 accommodation coefficient for  parallel  momentum 

accommodation coefficient for perpendicular momentum 0N 

0’ accommodation coefficient for  parallel conductive heat flux 

($ perturbation function 

Special notations: 

collisional t ime derivative of velocity distribution function 

velocity average of G based on complete distribution function 

velocity average of G based on perturbation function fo(0)h 

(G> 

(Glh) 

(G 11) velocity average of G based on Maxwellian distribution fo(0) 

Vector quantities without arrows denote magnitudes. 

THE LINEAFUZED KCNETIC THEORY 

The purpose of this  section is to develop the linearized kinetic theory for  a semi-  
infinite gas  of Maxwellian particles having the velocity and temperature profiles 
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and 

T = To(1 + (z) 

where K and ( a r e  constants specified in the problem definition and To and ps 
a r e  the gas temperature and dimensionless flow velocity at the surface (z = 0) of a sta- 
tionary flat plate. These expressions a r e  assumed to  hold throughout the gas. 

Equations (1) and (2) a r e  employed directly in the Boltzmann kinetic equation 
(ref .  7) 

c'. Vf = (1 + @ ) F .  Vfo + f0& V@ = 

for  the steady-state velocity distribution function 

The symbol n re fers  t o  the particle number density and 

(3) 

is the dimensionless particle velocity. Body forces  such as gravity a r e  neglected. 

If the macroscopic gas properties vary only with z ,  the gradient of the Maxwellian 
function fo  can be written as 

= kfo[2 u - dT + 2 ( 5 )  
T dz 2kT 

T 
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with the aid of equations (1) and (2) and the ideal gas law p = nkT. The approximate 
equalities in equation (6) refer t o  the arbi t rary neglect of quadratic and higher order  
t e r m s  in both p and (T - To)/T. 

the largest  contributions t o  @ are first order  (that is, l inear in p o r  (T - To)/T), 
completely defines the linearization process  and yields 

This  neglect of second and higher order  t e rms ,  together with the assumption that 

from equations (3) and (6). The perpendicular distance from the plate is obviously lim- 
ited t o  moderate values by the restrictions on p and T. 

Another convenient assumption is that the diagonal elements of the t race less  pres-  
su re  tensor 

0 

F= 2 p ( ( m )  - ;<.2)T) (8 ) 

are zero  through first order ,  which is a familiar result  in the midst of gases experiencing 
simple shear  and implies a constant sca la r  pressure  because of the steady-state equation 
of motion 

qzz dz + P) = 0 

The substitution into equation (7) of dp/dz = 0 and the trial function 

@ = aluxuz + a2(u2 - g)uz 

(9) 

yields 

for  Maxwellian particles (that is, interparticle potentials varying as the inverse fourth 
power of the separation). 
preserve the spherical harmonic character of equation (10) and permit an exact closed- 
form solution (ref. 7). The viscosity q in equation (11) is a correct  representation of 
the detailed collision dynamics. 

Only for  such interactions do the Boltzmann collision integrals 

Equations (10) and (11) combine t o  give 

which is the exact f i rs t -order  perturbation function in the midst of the gas and is assumed 
not to  change in character as z approaches zero. flowever, this  expression and the 
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velocity and temperature profiles of equations (1) and (2) a lso must satisfy the boundary 
conditions at the surface of the flat plate before they can be termed a precise physical 
description of the problem. Wang Chang and Uhlenbeck’ s constraints a r e  not so satisfied. 
The crit ical  subject of correct  boundary conditions is discussed in some detail in the next 
two sections. 

BOUNDARY CONDITIONS 

Since the flat plate is stationary relative t o  the observer and located at the position 
where the gas temperature is To  and the particle number density is no, the most 
appropriate formulation of equations (4) and (12) for  the specification of boundary condi- 
tions is 

The expression for n employed in equation (13) is obtained from equation (2) and 
dp/dz = 0 to be 

n = nO(l - (z) 

If the new definitions 

y =  - (220)l’2a - 

and 

a r e  introduced, and if  the mean f ree  path 1 is defined by the viscosity relation 

1 -  
rl = zpvl 

where p is the mass density and 
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is the mean equilibrium particle speed, equation (13) becomes 

f = fo(0) (1 + h) 

with 

(20) h = 2(Ps + Kz>r, + @(Y2 - ;) - @[ 42 Ky x + -  35 4 @ 2 - ;]yz 

The conservation laws t o  be satisfied by equations (19) and (20) at z = 0 are 

(21) O = @zp) 

u{yxyzlh> <o = +xyzlh> (22) 

u&YY,lh)yz<o = t Y y . l h >  (23) 

uN($~219y Z <o + ‘ N @ Z ~ ~ $ ~ ~ < O )  = +z2/h)yz<0 - (yz2~h)yz,~ 

72 

(24) 

and 

corresponding to  particles,  the x-,  y-, and z-components of momentum, and energy, 
respectively, with gas-wall accommodation coefficients 0, u, u, uN, and a. Special 
definitions include AH for  the magnitude of the excess random energy striking unit area 
of the wall in 1 second, the parameter  relating to the z-momentum associated with 
AH, and the symbolic integral 

e N  

for velocity-averaged quantities. 

If each accommodation coefficient refers on the average t o  the fraction of a parti-  
cle’s corresponding macroscopic property which is lost on impact with the wal l ,  the left- 
hand s ides  of equations (21) to  (25) represent the total amounts of such properties absorbed 
in 1 second by a unit area of the wall. The steady-state conservation laws require  these 
absorptions to be balanced by the net property fluxes on the right-hand s ides  of equa- 
tions (21) to  (25). Only eN in equation (24) and A H  in  equation (25) remain t o  be speci- 
fied in order  t o  utilize these conditions. 
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Since the random energy of the incident s t r eam is governed entirely by the 
Maxwellian function fo(0) at z = 0, the magnitude of such energy crossing unit area 
in  1 second must satisfy 

The t e r m s  in the two parentheses following the second equality sign in equation (27) cor-  
respond, respectively, t o  the average energy per  particle issuing toward the wall f rom an 
equilibrium gas at temperature To and the number of such particles per  unit area per  
second. A s imi la r  reflected s t ream at the temperature Tw of the wall (but with the 
same number of equilibrium particles per  unit area per  second in order  not t o  imply a 
net particle flux (see ref. 1, p. 313)) would ca r ry  energy away in the amount 

Hw = ( 2 k T W ) ( T )  

The substitution into equation (25) of the energy difference 

obtained from equations 

To - Tw 
TO 

E =  

and the identity 

(2), (27), and (28), the definition 

yields the final energy condition 

This particular form is chosen for  subsequent 
Uhlenbeck’ s constraints. 

comparisons with Wang Chang and 

Of the five boundary conditions listed in equations (21) t o  (24) and (32), only the con- 
servation of energy and the x-component of momentum are not satisfied automatically by 
the h of equation (20) if 
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2 - ON 

'N = ?(F) (33) 

Equation (33) is obtained by using equation (20) to  evaluate the integrals in equation (24) 
and solving the resulting expression for  The proportionality t o  ,$ confirms the 
interpretation that E~ is related t o  AH and vanishes in the absence of temperature 
gradients. 

Accordingly, equations (22) and (32) are sufficient to  determine the two remaining 
unknown parameters  ps and E and thereby complete the f i rs t -order  description of a 
semi-infinite gas with given velocity and temperature gradients and mean f ree  path and 
with given wall and gas-wall parameters  Tw, a, a, and oN. Each given quantity either 
contributes to  the basic problem definition or  must be determined from the details of gas- 
wall interactions; hence, the role  of pure kinetic theory is finished with the application of 
equations (22) and (32) to  equation (20). 

Pertinent integrations f o r  this purpose a r e  given by the expressions 

Kz 
(yx..Ih) = -711/2 

and 

the appropriate combinations of which a re  

;(ps + ") = Kz 

and 

according t o  equations (22) and (32). 

Hence, the velocity and temperature  jumps, vs and AT,  satisfy 

(39) 

(40) 



and 

with the aid of equations ( l ) ,  (2), and (30). 

These resul ts  are precisely those of Maxwell (see ref. 1, pp. 296 and 314) but with 
the distinction that they are now supported by a rigorous first-order kinetic theory of 
Maxwellian particles.  This  conclusion depends, of course,  on the completeness of the 
boundary conditions of equations (21) to  (24) and (32). The question might be asked, for 
example, whether other particle properties should be constructed from the basic ones of 
particle identity, momentum, and energy, and then forced by steady-state arguments t o  
satisfy their  own conservation laws at the wall. 

A typical such constructed property is the x-component of a particle's heat flux 
which in the midst of a gas seems t o  infer a net flow of this  property in the z-direction 
according to  the integral (y2yxyz(h). Should a new accommodation 
introduced so that 

coefficient CT' be 

(43) 

represents  an additional constraint on the solution of the kinetic equation at z = O? O r  
should u' be defined exclusively by equation (43) without any independent existence from 
detailed gas-wall physics? The most likely interpretation is the following: Since the 
conservation of energy and momentum completely describes the dynamics of gas-wall col- 
lisions if the accommodation coefficients a ,  0, and oN are known, equation (43) se rves  
only to  express d in t e r m s  of a, 0, and uN and thus should not be regarded as an 
additional restriction on the velocity distribution function. More precisely, 

140- c' = - 
o+ 1 2  (44) 

f rom the application of equation (20) t o  equation (43) and the subsequent use of equa- 
tions (1) and (4 l). 

Although this distinction between the conservation of basic and constructed particle 
properties may seem tr ivial  from the standpoint of a straightforward treatment of the 
present problem, it is absolutely essential  for the critical analysis of Wang Chang and 
Uhlenbeck's boundary conditions given in the next section. Their  application of equa- 
tion (43) with d equal t o  CJ instead of the value in equation (44) is directly responsible 
fo r  the previously mentioned nonanalytic exponential contributions to  h in references 5 
and 6. 
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WANG CHANG AND UHLENBECK'S THEORY 

Wang Chang and Uhlenbeck's theory (refs.  4 to  6) of simple shear  in a semi-infinite 
gas of Maxwellian particles differs f rom that of the preceding sections only in  the replace- 
ment of the conservation laws of equations (21) to  (24) and (32) by the single microscopic 
condition 

h(Yz) = AB + (1 - A)h(-yz) (yz ' 0) (45) 

at z = 0. The accommodation coefficient A is said to  represent the fraction of parti-  
c les  striking the plate which is reemitted with the Maxwellian distribution corresponding 
t o  Tw and zero  flow velocity - that is, which is deprived by the plate of all properties 
characterist ic of the incident s t ream. The remaining particles are specularly reflected, 
whereas the unknown constant B is related to  the gas densi tynear  the plate. These 
concepts are reiterated in a la ter  survey by Uhlenbeck and Ford (ref. 11). 

But equation (45) must be statistically equivalent to  the definition of A as the aver- 
age fraction of a particle 's  total  nonequilibrium properties (plus excess random energy 
and associated z-momentum) absorbed by the plate; hence, the question must be asked 
whether a single accommodation coefficient is meaningful. In particular , the 
Ob2  ,yx,yy) y,-moment of equation (45) yields 

which combines with the identity 

to  give the following conservation law for  the quantity 8 y2,y ,y * ( Y). 

The coefficient A clearly refers in this expression t o  the average fraction of a 
particle's 8 y2,yx,yy)-property absorbed by the plate and h is the perturbation functian 
of Wang Chang and Uhlenbeck. 
question of whether Wang Chang and Uhlenbeck's constants A and B are adequate to  
describe the infinite variety of absorptions associated with different choices of 8. 

( 
But equation (48) also raises the obvious and crit ical  
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Similarly, the yz2-moment of equation (45) gives 

- .  

Arbitrary 
CJ 

Arbitrary 

CJN 
Ly 

__ - 

for the conservation of the z-component of momentum. Again the dependence of A on 
the moment taken is obvious : Unless the same average absorption fraction applies to 
every particle property, Wang Chang and Uhlenbeck's microscopic boundary condition is 
incorrect. 

- . 

0 
Arbitrar  
Arbitrar:  

-EN 
- E  

~ __ 

However, the e r r o r  is not as ser ious in some applications as might be inferred 
from the preceding discussion. A detailed comparison between equations (48) and (49) 
and equations (21) to (24) and (32) is given in table I f o r  the present problem and also for 
the problems of zero  shear  (dv/dz = 0) and no temperature  gradient. The h of equa- 
tion (20) is used in  the calculations of A and B, which thus correspond to the exact 
f i rs t -order  solution of the present research. 

0 
Arbitrary 
Arbi t rary 

TABLE 1.- CORRELATIONS OF WANG CHANG AND UHLENBECK'S 

BOUNDARY CONDITIONS WITH THE CONSERVATION LAWS 

Arbi t rary 
Arbi t rary 
Arbitrary 

FOR THREE DIFFERENT PROBLEMS 

Property 
conserved 

- 

Part ic les  
x- momentum 
y-momentum 
z -momentum 
Energy 

~ 

dv 
dz 
- # 0; 

A 

Arbitrary 

Arbitrary 
Arbitrary 
Arbi t rary 

~.__ ~- 

CJ 

- 

dz dz 
dT - #  0 dz 

.~ 

B 

0 
Arbitrary 
Arbi t rary 

'EN 

_ _ ~ .  

- E  

dv dT 
dz dz - # O ;  - # O  

The most outstanding feature of table I is the liberal sprinkling of a rb i t ra ry  values 
of A and B for  each problem. Although two of the problems require more than one 
value of A and B and thereby invalidate Wang Chang and Uhlenbeck's boundary condi- 
tion of equation (45), the one corresponding to  simple shear  with no temperature gradient 
clearly shows the constants A = CJ and B = 0 to  be consistent with all five conservation 
laws. Why then do not Wang Chang and Uhlenbeck (refs. 5 and 6) obtain the resul ts  of this  
paper when T is constant? What is the origin of their  nonanalytic exponential contribu- 
tions to the velocity distribution function and the velocity profile? 
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Answers to  these questions are found in Wang Chang and Uhlenbeck's special 
applications of equation (45) ra ther  than in the properties listed in table I. Jus t  as in the 
preceding sections, the boundary conditions of references 4 to  6 are applied only in the 
integrated forms  of equations (48) and (49), but with no restrictions on the function 

and actually used by Wang Chang and Uhlenbeck to obtain the constraint 

O(y2,yx,yy). Consequently, to  take one example, the function e = y 2 yx is both permitted 

fo r  A = CT and B = 0 in equation (48). Except for  the nonphysical values CJ = 0 and 
CJ = 2, this  expression is clearly inconsistent with equations (43) and (44) and thus imposes 
an improper condition on the solution of the kinetic equation. The single accommodation 
coefficient A in equation (45) is never sufficient to describe the absorptions by the wall 
of all gas properties o r  conceivable moments. 

One of the principal objections to standard kinetic theories is removed by this anal- 
ysis  of Wang Chang and Uhlenbeck's research. No longer can the basic assumptions 
underlying the Burnett o r  13-moment formulations be dismissed on the grounds that they 
disagree with the f i rs t -order  behavior of a viscous gas near a wall. (See ref. 10.) Other 
difficulties do exist (ref. 12)  and some crit icisms a r e  justified, especially with regard to 
the higher Chapman-Enskog approximations, but such aspects a r e  irrelevant to the simple 
problems considered here.  The exact f i rs t -order  distribution function of equations (4) 
and (12) is precisely Grad's 13-moment solution. 

More recent work in the same problem a r e a  includes two papers by Scharf (refs.  13 

The source t e r m s  appear as combinations of Dirac delta func- 
and 14), in which boundaries a r e  regarded as sources  of energy and momentum in the 
gaseous kinetic equations. 
tions centered on the walls and correspond to  gas properties at such positions having 
average values between those of the wall and those of the gas in the absence of the wall. 
These additions of explicit mixtures of gas and wall properties to the gaseous kinetic 
equations are neither required nor implied by kinetic theory and boundary conditions. 

COUETTE FLOW 

The resul ts  of the preceding sections are easily extended to  the problem of simple 
Couette flow between two parallel  plates, one of which is stationary at z = 0 while the 
other at z = d moves in the positive x-direction with the constant velocity vw. Equa- 
tion (41) and the l inear velocity profile 
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are rigorously valid through first order ,  so that 

-- dv - (vw - V s )  - V s  - - -  + 2(2 - C F ) ~ - '  

dz d d ud L J 

0 
Finally, since the traceless pressure  tensor  element P,, is -q dv/dz from 

equations (8) and (12), the drag force D exerted on unit area of the lower plate must 
satisfy 

according to  equation (52). 

If the temperature gradient is zero,  the only restriction imposed on equations (51) 

to  (53) is that the Mach number pw of the upper plate be small  - or  more precisely,  
f rom equation (12), that the parameter  Zpw/d be small. Hence, the Knudsen number 
Z/d can extend almost to  unity in many applications, which is well above the lower limit 
usually assigned t o  the transition flow regime, and equation (53) represents  a correct  
generalization of the Navier-Stokes formula 

D = -  VVW 

d (54) 

A s imi la r  study of the conductive heat flux between two stationary parallel  plates, 
one at z = 0 with temperature T 1  and the other at z = d with temperature T2, shows 

to  be restr ic ted only by small  values of Z(T2 - T1)/Td. The successive s teps  in equa- 
tion (55) are obtained by using equations (2), (12), and (42). 

HIGHER MACH NUMBERS 

In addition to  the cri t icism based on Wang Chang and Uhlenbeck's theory, Schaaf 
and Chambr6 (ref. 10) state that the Burnett and 13-moment representations do not ade- 
quately approximate the resul ts  found by Truesdell  (ref. 9) fo r  the l e s s  difficult problem 
of simple shear  in an infinite medium of Maxwellian particles. Since Truesdell  claims 
an exact solution of the complete Boltzmann equation, at least a partial analysis of his 
work is appropriate to the present research. 

Truesdell 's method begins with the complete se t  of macroscopic equations of change 
obtained by taking all moments of the rigorous Boltzmann kinetic equation. However, 
instead of following Grad's example of using an approximate distribution function to 

.... . -- .._. . .. 



break the chain of relations after a specified number of moments, he accomplishes the 
same purpose by making arb i t ra ry  assumptions about the spatial o r  t ime variations of all 
but a few of the infinite number of moments. In the particular problem of simple shear ,  
Truesdell  assumes all second and higher moments to be spatially homogeneous; as a 
result ,  only the equations of continuity, motion, and energy balance are nontrivial. The 
additional assumptions of constant number density and a linear velocity profile then force 
the problem t o  be t ime dependent, a fact which Truesdell  uses  t o  criticize previous 
steady-state solutions based on Burnett's equations. 

The contention of the present paper is that Truesdell 's  cri t icism is invalid for  two 
reasons: first, the higher moments are not subject to direct  laboratory control (or 
accurate theoretical speculation) and may behave very differently f rom his assumptions; 
secondly, Truesdell 's  cr i t ic ism fails to  distinguish between the problem conditions arbi- 
t ra r i ly  imposed by his assumptions and the somewhat different Conditions underlying the 
Burnett solutions. If, for  example, the simple shear  is maintained by the relative motion 
of two widely separated parallel  plates to establish a definite plane of symmetry,  the gas 
temperature will eventually peak at this plane and cause a steady-state conduction of 
friction-generated heat toward each plate. Truesdell 's  restriction to spatially homoge- 
neous second moments (including the temperature) precludes this  heat conduction and thus 
corresponds t o  a steadily increasing temperature with time. 

A better and certainly more  physical approach is to insist  upon a steady state and 
deduce f rom the kinetic theory what the velocity profile must be. If the expansion param- 
e te r  I dp/dz is small  enough, the linearized theory of the preceding sections is appli- 
cable and predicts a constant velocity gradient. 
(or the maximum Mach number if the flow is Couette), a convenient procedure s t a r t s  with 
the following macroscopic equations for  spatial variations in the z-direction and a mean 
particle velocity in the x-direction: 

Conservation of x-momentum: 

For somewhat la rger  values of 1. dp/dz 

0 
Pxz = Constant 

Conservation of z-momentum: 

Pzz + p = Constant 
0 

0 
and the Pxz equation: 

Pxz O +; (0 P,, + p -  );;+ --- 2qdpxzz - 0  
P dz 
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where 

Each of equations (56) to (58) is obtained from a moment of the Boltzmann equation. 

Unless higher moment equations are considered, some assumption must be made 
about the character  of pxzz before equation (58) can be utilized effectively. If the sub- 
sequent analysis is restr ic ted to  third order ,  which at most is the order  of pxzz in this  
problem, and if the leading contribution to  any gas property is assumed t o  be constant o r  
proportional to  z, then pxzz satisfies 

Although the assumption underlying this restriction is far from established, it at least 
conforms to  the previous f i rs t -order  resul ts  for  the flow velocity, pressure tensor ,  and 
heat flux. 

The second and final assumption is that the third-order flow velocity must satisfy 

where K1 and K3 are first- and third-order constants, respectively. 

Since K1 is input data controlled by whatever mechanism maintains the flow, 
the determination of K3 as a function of K1 will complete the present description. 
Accordingly, the differentiation of equation (58) and use of equations (56), (57), (60), 
and (61) yield the third-order expression 

and thus 

K1 dr] 
67z dz 

K3 = --- 

0 
fo r  constant p and second-order Pzz. The coefficient K3 is obviously a third-order 
constant because 7 is proportional to  some power of the temperature and the tempera- 
tu re  undergoes a second-order parabolic decay from its peak value at the symmetry plane. 
No temperature gradient was induced at the f i rs t -order  level in the previous sections. 

The two fundamental conclusions of this  brief study are summarized as follows: 
(1) induced temperature gradients cause spatially dependent viscosities which lead to  
modifications of the velocity profiles in the simplest kinds of viscous flow, and (2) these 
modifications are at most third order  in the expansion parameter  p o r  2 dp/dz. Hence, 
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the Burnett prediction of simple shear  (that is, a linear velocity profile) in a steady- 
state infinite medium is entirely consistent with the second-order limitations of that 
approximation. 

CONCLUDING REMARKS 

The simple problems of viscous flow near a flat plate, Couette flow between parallel 
plates, and heat t ransfer  between parallel plates are solved exactly through linear t e r m s  
in typical Chapman-Enskog expansion parameters.  Accurate corrections for  Knudsen 
numbers extending almost to unity are applied to  the Navier-Stokes theory of Couette flow 
with low Mach numbers, None of these examples displays the nonanalytic exponential 
character of velocity distribution functions and calculated resul ts  found near the walls by 
Wang Chang and Uhlenbeck. Differences between the two theories are explained in t e r m s  
of boundary conditions, some of which are nonphysical in Wang Chang and Uhlenbeck's 
procedure. Less  rigorous extensions of the present theory to  higher Mach numbers show 
that Truesdell 's  disagreements with the standard Chapman-Enskog and Grad approxima- 
tions a r e  caused by nonphysical assumptions about the behavior of higher moments. 

In summary, much of Maxwell's original theory of velocity and temperature jumps 
is supported by the present exact solutions of linearized Boltzmann equations for 
Maxwellian molecules; more specifically, his assumptions about the distribution function 
and the nature of velocity and temperature profiles in the immediate vicinity of a wall a r e  
accurate through first order .  Only the hypothesis that the reflected particles can be 
divided into diffuse and specular groups is obsolete. 

Extensions to  more general interparticle interaction potentials and system geome- 
tries can be very difficult, but no major changes a r e  expected in the basic conclusions. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., June 25, 1970. 
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